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Abstract

As with other commodities, markets could help us efficiently produce machine
intelligence. We propose a market where intelligence is priced by other intelligence
systems peer-to-peer across the internet. Peers rank each other by training neural
networks which learn the value of their neighbors. Scores accumulate on a digital
ledger where high ranking peers are monetarily rewarded with additional weight
in the network. However, this form of peer-ranking is not resistant to collusion,
which could disrupt the accuracy of the mechanism. The solution is an incentive
mechanism which maximally rewards honestly selected weights, making the system
resistant to collusion of up to 50 percent of the network weight. The result is a
collectively run intelligence market which continual produces newly trained models
and pays contributors who create information theoretic value.

The production of machine intelligence has come to rely almost entirely on a system of benchmarking,
where machine learning models are trained to perform well on narrowly defined supervised problems.
While this system works well for pushing the performance on these specific problems, the mechanism
is weak in situations where the introduction of markets would enable it to excel. For example,
intelligence is increasingly becoming un-tethered from specific objectives and becoming a commodity
which is (1) expensively mined from data (Schwartz et al. [2019]), (2) monetarily valuable (OpenAI
[2020]), (3) transferable (Devlin et al. [2019]), and (4) generally useful (Radford et al. [2019]).
Measuring its production with supervised objectives does not directly reward the commodity itself
and causes the field to converge toward narrow specialists (Chollet [2019]). Moreover, these objectives
(often measured in uni-dimensional metrics like accuracy) do not have the resolution to reward niche
or legacy systems, thus what is not currently state of the art is lost. Ultimately, the proliferation of
diverse intelligence systems is limited by the need to train large monolithic models to succeed in
a winner-take-all competition. Standalone engineers cannot directly monetize their work and what
results is centralization where a small set of large corporations control access to the best artificial
intelligence (OpenAI [2020]).

A new commodity needs a new type of market1. This paper suggest a framework in which machine
intelligence is measured by other intelligence systems. Models are ranked for informational produc-
tion regardless of the subjective task or dataset used to train them. By changing the basis against
which machine intelligence is measured, (1) the market can reward intelligence which is applicable
to a much larger set of objectives, (2) legacy systems can be monetized for their unique value, and
(3) smaller diverse systems can find niches within a much higher resolution reward landscape. The
solution is a network of computers that share representations with each other in a continuous and
asynchronous fashion, peer-to-peer (P2P) across the internet. The constructed market uses a digital
ledger to record ranks and to provide incentives to the peers in a decentralized manner. The chain
measures trust, making it difficult for peers to attain rewards without providing value to the majority.
Researchers can directly monetize machine intelligence work and consumers can directly purchase it.

1“The iron rule of nature is: you get what you reward for. If you want ants to come, you put sugar on the
floor.” - Charlie Munger
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1 Model

We begin with an abstract definition of intelligence Hinton et al. [2015] in the form of a parameterized
function y = f(x) trained over a dataset D = [X,Y ] to minimize a loss L = ED[Q( y, f(x)) )].
Our network is composed of n functions F = f0, ..., fj , ...fn, ’peers’ where each is holding zero
or more network weight S = [si] ’stake’ represented on a digital ledger. These functions, together
with losses and their proportion of stake, represent a stake-weighted machine learning objective∑n

i Li ∗ si.

Figure 1: Peer functions with losses Li and unique datasets Di.

Our goal is the distribution of stake I , as incentive, to peers who have helped minimize the loss-
objective (Figure-1), and importantly, in such a way that, it is difficult for a small proportion of stake
to collude as a means to maximize their distribution in the network without minimizing the loss
(Figure-3).

St+1 = St + τI (1)

In this paper, we suggest this can be achieved through peer-ranking, where peers use the outputs
of others F (x) = [f0(x)...fn(x)] as inputs to themselves f(F (x)) and learn a set of weights
W = [wi,j ] where peer i is responsible for setting the ith row through transactions on a digital ledger.

(a) Inter-function connectivity. (b) Weight matrix.

Setting weights using an fishers information pruning score LeCun et al. [1989]; Yu et al. [2017] in
the ranking calculation, R = WT · S, achieves an idealized scoring where each peer’s incentive is
equivalent to its pruning score: the cost in entropy towards

∑n
i Li ∗ si induced by removing it from

the network.

ri ≈
1

n

n∑
j

∑
x∈Dj

∆FT (x)i ·H(Qj(x)) ·∆F (x)i (2)

However, this approach is not resistant to collusion, where peers vote for themselves, notably instead
of using (2), and set weights to enhance their own inflation at the expense of the network(Figure-3).
This attack is trivial since the digital ledger cannot audit the parameters of each model, only the
inter-model weights W.
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Figure 3: Disjoint cabal: peers in the right sub-network only vote for themselves.

2 Incentive

We extended the naive ranking method to evade collusion with an ’incentive’ function I(W,S) which
limits reward to peers which have not reached consensus in the network. Assuming no group of peers
holds more than the majority of stake in the system, then peers can only attain inflation by working to
attract votes from the majority: a core assumption in many decentralized system like Bitcoin.

Reintroducing our terms, our incentive mechanism requires a stake vector S and a set of weights W
where rows are inter-peer rankings. We also infer a trust matrix T from the weights, where ti,j = 1
if and only if there is a non-zero edge between peer i and j.

W =

w0,0 w0,1 w0,2 w0,3

w1,0 w1,1 w1,2 w1,3

w2,0 w2,1 w2,2 w2,3

w3,0 w3,1 w3,2 w3,3

 S =

s0s1s2
s3

 T =

t0,0 t0,1 t0,2 t0,3
t1,0 t1,1 t1,2 t1,3
t2,0 t2,1 t2,2 t2,3
t3,0 t3,1 t3,2 t3,3

 (3)

We define peers who have reached ’consensus’ as those with non-zero edges from more than 50
percent of stake in the network. (This is simply the normalized values of (TT · S) > 0.5). To ensure
the mechanism differentiable we define this computation using the continuous sigmoid function.
The sigmoid produces a threshold-like scaling which rewards connected peers and punishes the
non-trusted. The steepness and threshold point can be modulated through a temperature ρ and shift
term κ.

C = σ(ρ(TTS− κ)) (4)
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Figure 4: Consensus function ci = σ(ρ
∑
j tj,isj − κ) with temperature ρ = 10 and shift κ = 0.5.

The activation takes the trust scores and produces an exponential scaling up to our inflection point
where a peer is connected to the majority.
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We use the consensus term to scale the original rankings. As peers attain more weight in the network
they increase their inflation exponentially up to 0.5. In section 10 we show how this ensures that the
larger of two competing sub-graphs comes to own an exponentially larger proportion of the network
through inflation.

I = R ·C (5)

3 Bonds

This consensus described above protects against naive collusion by making it difficult for small
groups to achieve inflation. However, it does not provide a incentive for correctly selecting weights.
We introduce these incentives by adapting the inflation mechanism with a speculation based reward
in the form of ’bonds’ B. Here, bi,j ∈ B is the proportion of bonds owned by peer i in peer j.

B =

b0,0 b0,1 b0,2 b0,3
b1,0 b1,1 b1,2 b1,3
b2,0 b2,1 b2,2 b2,3
b3,0 b3,1 b3,2 b3,3

 (6)

Bonds accumulate at each step similarly to token inflation where ∆B = W · S. In this way, peers
accumulate bonds in the peers they rank, thus ’bonding’ themselves to those that they are connected
to.

Bt+1 = Bt + W · S (7)

Using the B bond matirx, the chain redistributes the normal incentive scores ∆S = BT · I. Like
market based speculation on traditional equities, the peers that have accumulated bonds in peers
that others will later value attain increased inflation themselves. Thus it makes sense for peers to
accumulate bonds in peers which it expects to do well according to other peers with stake in the system
- thus speculating on their future value. Finally, we adapt this mechanism slightly to ensure peers
attain a fixed proportion of their personal inflation. For instance, 50 percent, ∆S = 0.5BT I + 0.5I.
∆S becomes the mechanism step update with determines network incentives across the n peers.

St+1 = St + τ∆S (8)

4 Reaching Consensus

The incentive function in section 2 rewards highly trusted peers, however, it may not solve the
collusion problem if the honest nodes do not reach consensus. Notably loose, unused stake or
incorrectly set weights will detract from the inflation proportion of honest peers in comparison to
a colluding sub-network. The honest network, although holding more stake, may not gain enough
inflation to overshadow its adversary. The dishonest sub-graph need only attain enough inflation to
compete with its largest competitor, not to entirely dominate the network.

This attack is possible when the majority of token inflation is being distributed towards peers
which are non-majority-trusted in the graph. The chain can measure this through a ’loss term’
L = −R · (C − 0.5) (Figure 7). The term is negative iff the majority of inflation is being distributed
towards peers with more than 0.5 consensus. The chain uses the loss calculation as a peg. By
increasing the number of weights the average miner sets across the network the chain can ensure
consensus.
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Figure 5: The left network has low consensus L > 0. The system is not resistant to a cabal with less
than 50 percent of the stake. The chain increases the number of edges set by peers until L < 0. At
this point the majority of inflation flows to peers with majority consensus.

5 Running the Network

The steps to run a peer in the network are:

1. The peer defines its dataset Di, loss Li and parameterized function fi.
2. At each training iteration, the peer conditionally broadcasts batches of examples from Di to

its peers x = [batch_size, sequence_length, input_size].
3. The responses F (x) = [...fj(x)...] – each of common shape fj(x) =

[batch_size, sequence_length, output_size] – are joined using the gating function and used
as input to the local model fi.

4. Comparison against the target labels produces a loss-gradient ∂L∂F which back-propagates
through fi and out to the network.

5. During 2 and 3 the peers learn the weights for their row wi,j ∈W by measuring the value
of the signals produced by their peers.

6. At distinct time-step t participants submit changes to the weights ∆Wi to update the ranking
R, inflation I, consensus term C, and bond distributions δB.

7. The chain measures ’loss’ and optionally distributes newly minted stake into the network
∆S according to the bond ownership.

6 Tensor Standardization

A common encoding of inputs and outputs is required for the various model types and input types
to interact. The use of tensor modalities can be used to partition the network into disjoint graphs.
At the beginning, the network can be seeded with a single modality TEXT, then expanded to
include IMAGE, SPEECH, and TENSOR. Eventually, combinations of these modalities can be
added; for instance TEXT-IMAGE, to bridge the network into the multi-modality landscape. In-
centives to connect modalities can be integrated with the same trust scaling suggested in section
(2). Eventually, successful models should accept inputs from any modality and process them into
a useful representation. For consistency, we can use a standard output shape across the network
[batch_size, sequence_dim, output_dim] similar to the common tensor-shapes produced by language
and image models – and extend this size as the network increase in complexity.
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Figure 6: Standardization of input dimensions within the network

By working on abstract input classes we can ensure participants work towards a general multi-task
understanding Kaiser et al. [2017]. Participants may use: (1) completely distinct computing substrates
Nugent and Molter [2014], (2) datasets Lample and Conneau [2019], (3) models, and (4) strategies
for maximizing their incentives in the market. It makes sense for peers to work on unsupervised
datasets where data is cheap and privacy not required.

7 Conditional Computation

As the network grows, outward bandwidth is likely to become a major bottleneck. The need to reduce
network transfer and a method of selecting peers is required. Conditional computation can be used
where peers learn through gradient descent how to select and prune neighbors in the network. For
example, a product key layer or a sparsely gated layer Shazeer et al. [2017].

fi = fi(G(x)) (9)

G(x) =
∑
j

gj(x) ∗ fj(x) (10)

The conditional layer determines a sparse combination of peers to query for each example and
multiplicatively re-joins them, cutting outward bandwidth by querying only a small subset of peers
for each example. The method can drastically increase outward bandwidth Shazeer et al. [2017]
Ryabinin and Gusev [2020], allowing peers to communicate with many more neighbors in the graph.
In essence, the layer acts as a trainable DNS lookup for peers based on inputs. Furthermore, being
trainable with respect to the loss, it provides a useful proxy for the weights wi,j ∈W.

8 Knowledge Extraction

Dependence between functions ensures that models must stay online and cannot be run in production.
Breaking this dependence can be achieved using distillationHinton et al. [2015]: A compression and
knowledge extraction technique in which a smaller model – the student - mimics the behaviour of the
remaining network. The distillation layer is employed in conjunction with conditional computation
(10) layer where the student model learns to mimic the network using the cross-entropy (shown below
as KL) between the logits produced by the gating network and the student’s predicted distribution
Sanh et al. [2020].

distillation loss = KLD(dist(x), G(x)) (11)

Because the distilled model acts as a proxy for the network, models can be fully taken off-line and
evaluated. Recursion through the network is also cut between components allowing for arbitrary
network graphs. If models go offline, their peers can use the distilled versions in-place. Private data
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can be validated over the distilled models instead of querying the network. Eventually, components
can fully disconnect from the network using the distilled models to do validation and inference offline.

Figure 7: Queries propagate to depth=1 before the distilled model is used.

9 Learning Weights

Our goal in this work is the production of a ranking r = [ri] over peers where score ri ∈ R represents
a participant’s information-theoretic significance to the benchmark. Following LeCun and others
LeCun et al. [1989]; Yu et al. [2017], it is reasonable to define this significance by equating it with the
cost of removing each peer from the network. We can derive this score analytically where ∆F (x)i
is a perturbation of the jth peers’s inputs when the ith peer is removed from the network (Appendix
12.2):

ri ≈
1

n

n∑
j

∑
x∈Dj

∆FT (x)i ·H(Qj(x)) ·∆F (x)i (12)

∆F (x)i = [0, ...0,−fi(x), 0, ...0]

Note, when the error function Qj is the twice-differentiable cross-entropy, then H(Qj) is its Fisher-
information matrix, and ri ∈ R is suitably measured as each peer’s informational significance to the
network as a whole. However, information theoretic weights require the full Hessian of the error.
In practice it is more reasonable to use a heuristic to propagate a contribution score from the error
function through to the inputs Yu et al. [2017]. For instance, weights from the gating layer (Section
6) provide a useful differentiable proxy.

10 Collusion

We consider the scenario where a subset of the peers in the network have formed a ’cabal’: A set of
colluding peers attempting to maximize their inflation without accurately scoring their neighbors.
The fight between the honest graph A with stake SA and the disjoint cabal B with stake SB can be
determined by the proportion of network stake held by each. The honest graph must attain more
inflation to maintain its dominance and protect the network IA >> IB .

We assume that the proportion of stake in the honest graph is more than that found in the dishonest
graph SA > SB and that the chain has reached consensus L < 0. Since all peers in B are disjoint
from A, our loss term −RB · (CB − 0.5) > 0 is positive. Because L < 0 it must be the case that
RA · (CA − 0.5) < 0 is negative and there are peers in the honest sub-graph A who are connected to
the majority.

As the chain progresses, newly minted stake is being emitted at our inflation rate τ in proportion to
I = R · T . Importantly, the gradient of the incentive function with respect to the stake is positive and
super-linear at our inflection point between the honest and dishonest graph. Notably, δIδS = 5

2 , this
ensures that the amount of stake held by each sub-graph reflect a non-linear change in their inflation
at the next iteration.
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Initially, since SA > 0.5 and SB < 0.5 the proportion of stake emitted in sub-graph A exceeds that in
sub-graph B, and sub-graph A’s incentive grows super-linearly compared to B. The result is that the
ratio of stake SB

SA+SB
decreases – the cabal must continually add stake to its sub-graph to maintain

itself through time.

We consider this proportion between the competing graphs under continuous inflation. Converting to
python code ...

tau = 0.1
temp = 10
stake_A = 0.51
stake_B = 0.49
history = []
for block in range(100):

total_stake = stake_A + stake_B
trust_A = 1/(1 + math.exp(-(stake_A/total_stake - 0.5) * temp))
trust_B = 1/(1 + math.exp(-(stake_B/total_stake - 0.5) * temp))
ranks_A = stake_A
ranks_B = stake_B
incentive_A = ranks_A * trust_A
incentive_B = ranks_B * trust_B
total_incentive = incentive_A + incentive_B
total_stake = stake_A + stake_B
stake_A += tau * total_stake * incentive_A / total_incentive
stake_B += tau * total_stake * incentive_B / total_incentive
print (block, stake_B / (stake_A + stake_B))

>>
block | size of cabal
0 0.4877323388820201
1 0.4849535784321247
2 0.4815511535094221
3 0.477389901500398
4 0.4723093486843246
5 0.46612224574620587
6 0.45861590847737577
7 0.44955887540065376
8 0.43871643745912897
9 0.42587900870651624
10 0.41090548935459825
...
90 0.0002827251010618101
91 0.00025719653886131316
92 0.0002339730247373799
93 0.000212846436856568
94 0.00019362744329658293
95 0.0001761438058611274
96 0.00016023883697158944
97 0.00014576999582759936
98 0.00013260761127280887
99 0.00012063371993464691

11 Conclusion

We have proposed an intelligence market which runs on a P2P network outside of a trusted environ-
ment. Crucially, the benchmark measures performance as representational-knowledge production
using other intelligence systems to determine its value. The fact that this can be done in a collaborative
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and high-resolution manner suggests that the benchmark could provide a better reward mechanism
for the field in general.

To achieve this aim, the paper began with the definition of a P2P network composed of abstractly
defined intelligence models. We showed how this framework allowed us to produce a ranking for
each peer based on the cost to prune it from the network. Peers negotiated this score using a set of
weights on a digital ledger. However, the system was incomplete without mechanisms that prevented
participants from forming dishonest sub-graphs.

To resolve this, we proposed an incentive scheme based on peer connectivity which exponentially
rewarded peers for being trusted by a large portion of the network. This ensured that over time
dishonest sub-graphs decay to irrelevance.

Following this, we showed (1) how peers reduced the network bandwidth by learning connectivity
using a differential layer and (2) how they could extract fully network-disconnected machine learning
models to run in production. The result is an intelligence market which rewards participants for
producing knowledge and making it available to new learners in the system.
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12 Appendix

12.1 Ranking Accuracy

We consider the accuracy of the ranking mechanism when peers make self interested updates to the weights
on chain. The peers are under incentive pressure to both minimize their loss and stay connected within the
largest sub-graph. Since the mechanism is suitably mathematical we model each peer’s payoff function as a
differentiable utility function of the weights U(L(W))

Pi(W) = Ui(Li(W)) (13)

A peer’s utility term reflects that peers subjective interest in minimizing their loss U(L(W)). Since reducing
the magnitude of weights connecting this peer to others will decrease its ability to extract knowledge, we can
model our utility function as a change in inputs. To model this change we use a shifted threshold i.e. inputs from
neighbors are masked when weights drop bellow the average set by other peers µj = ( 1

n
)
∑n

i si ∗ wi,j which
in turn reflect a change in the loss function of peer i.

FW(x) = [f0(x) ∗ σ(si ∗ wi,0 − µ0), ..., fn(x) ∗ σ(si ∗ wi,n − µn)] (14)

σ =
1

1 + e−
x
T

(15)

To derive the change in loss given a change in weights we use an input perturbation (FW − FW0) where W0 is
the initial choice of weights. The same perturbation equation seen Section 7 returns the change in loss under a
Hessian term H(L(F )) (see 12.3):

∂L

∂W
=

∂

∂W

[
(FW − FW0)T ·H(L(F )) · (FW − FW0)

]
(16)

We make a further linear assumption about the utility function Ui(W ) = α ·Li(W ) to give us a fully differential
function for a peer’s utility. This construction is a smooth market Balduzzi et al. [2020] where we can explore
the competitive equilibrium using gradient descent 2 with steps ∆Wi = ∂Pi

∂Wi
.

Wt+1 = Wt + λ∆W (17)

∆W =

[
∂P0

∂w0
; · · · ;

∂Pn

∂wn

]
(18)

We evaluate the the accuracy of the peer ranking method by generating statistics from the above empirical
model. We first select mechanism parameters [λ, α, n] and generate an initial randomized network state [W0,S]
with n random positive semi-definite n× n hessian terms [H] one for each peer. Given the initialization we
apply the descent strategy (18) by computing the gradient terms from (16) and converge the system to the
implied equilibrium using a standard gradient descent toolkit. The discovered local minimum is the competitive
equilibrium where participants cannot vary from their choice of weights and stand to gain Dütting et al. [2017].
At this point we compute the competitive ranking R∗ and compare it to the idealized score R derived from
the hessians as discussed in Section 7. We measure the difference between the two scores as a spearman-rho
correlation and plot example trials bellow.

12.2 Deriving the idealized ranking

We approximate the change in the benchmark B =
∑n

i Li at a local minimum and under a perturbation
∆F (x)i = [...,−fi(x), ...] reflecting the removal of the ith peer.

∆B = B(F + ∆Fi)− B(F ) =

n∑
i

Li(F + ∆Fi)− Li(F ) (19)

Li(F + ∆Fi)− Li(F ) ≈ ∂Li

∂F
·∆Fi +

1

2
∆FT

i ·H(Li) ·∆Fi +O(∆F 3
i ) +O(∆F 3

i ) (20)

2Making gradient steps in this game is a regret-free strategy (see 12.6) and achieves the best expected payoff
in hindsight.
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Figure 8: Correlations between the competitive rank and coordinated rank for α ∈ {1, 10, 25, 50}.
We note that we see an increased relationship between the idealized rank and those discovered by the
market improves increasingly through the parameter α.

Equation (19) follows from the definition of the benchmark and Equation (20) follows from a Taylor series under
the perturbation ∆F (x)i. Note that the first term ∂Li

∂F
is zero at the local minimum and the higher order term

O(∆F 3
i ) can be ignored for sufficiently small perturbations. These assumptions are also made by LeCun et al.

[1989] and Yu et al. [2017]. Note that Li is an expectation over the dataset Di, and all terms are evaluated at a
point x so we have:

∆B ≈ 1

2

n∑
i

∑
x∈Di

∆FT
i (x) ·H(Qi(x)) ·∆Fi(x) (21)

Here the hessian over the error function H(Qi(x)) and the summation over the dataset
∑

x∈Di
have been

appropriately substituted. The constant factor 1
2

can be removed and this leaves our result.

12.3 Deriving the weight convergence game.

12.4 Theorem

For choice of Hessians H(L(F )) the network convergence-game can be described with the following linear
relationship between gradient terms:

∂P

∂W
= α · ∂L

∂W
+

∂r

∂W
(22)

With the gradient of the loss:

∂L

∂W
=

∂

∂W
[(FW − FW0)T ·H(L(F )) · (FW − FW0)] (23)

12.5 Setup

We analyze the system by characterizing the behaviour of participants via their payoff in two terms:

1. The utility attached to that participant’s loss as a function of their weights is U(L(W)). U is assumed
roughly linear for small change in the weight matrix, U(L) = α ∗ L, with ∂U

∂L = α, and α is assumed
positive and non-zero.

2. The network is converged to a local minimum in the inputs ∂L
∂F

= 0.

From the payoff formulation in 6.3 we write:

P (W) = α · L(W) + r(W) (24)

Note, the utility function and emission were measured in similar units and so α is the price of each unit change
in loss. The analysis just supposes such a score exists, not that it can be computed. Participants are selecting
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their weights by making gradient steps ∆Wi = ∂Pi
∂Wi

as to maximize their local payoff. For brevity we omit the
subscript i for the remainder of the analysis. Consider a Taylor expansion of the loss under a change ∆F in the
inputs.

L(F + ∆F ) = L(F ) +
∂L
∂F

∆F +
1

2
∆F ·H(L(F )) ·∆F +O(∆F 3) (25)

The first linear term ∂L
∂F

is zero at the assumed minimum and the higher order terms are removed for sufficiently
small perturbations in F . We then perform a change of variable F = FW0 , and ∆F = FW1 −FW0 where W0

are the weights at the minimum and W1 are another choice such that FW0 and FW1 are those inputs masked
by W0 and W1 accordingly. Substituting this into Equation (25):

L(FW1) = L(FW0) +
1

2
(FW1 − FW0)T ·H(L(F )) · (FW1 − FW0) (26)

The function L(FW1) is simply an approximation of the loss for any choice of weights W1 given that the
network has already converged under W0. Finally, by the α-linear assumption of the utility we can attain the
following:

∂U

∂W
= α · ∂L

∂W
≈ α

2

∂

∂W
[(FW − FW0)T ·H(L(F )) · (FW − FW0)] (27)

Note that we’ve dropped the subscript W1 for brevity, L(FW0)) is constant and therefore not depending on the
choice of weights, and the fraction 1

2
can be safely subsumed into the unknown α. The remaining term ∂r

∂W
is

derivable via the ranking function in Section 1. This leaves the result:

∂P

∂W
≈ α · ∂L

∂W
+

∂R

∂W
(28)

∂L

∂W
=

∂

∂W
[(FW − FW0)T ·H(L(F )) · (FW − FW0)] (29)

12.6 Deriving the ex-post zero-regret step.

Consider the system described above. A set of n peers are changing the weights in the ranking matrix W
iteratively using gradient descent with learning rate λ. Wt+1 = Wt + λ∆W. Here, the change of weights is
∆W = [∆w0, ...,∆wn] where each ∆wi is a change to a single row pushed by peer i. Each peer is attempting
to competitively maximize it’s payoff as a function of the weights Pi(W).

12.6.1 Definition

The ex-post regret for a single step is the maximum difference in loss between the chosen step ∆wi and all
alternative ∆w∗i . The expected ex-post regret is this difference in expectation, where the expectation is taken
over all choices ∆wj’s chosen by other participants Dütting et al. [2017].

rgti = E∆wj [max
∆w∗

i

[Pi(∆w
∗
i )− Pi(∆wi)]] (30)

12.6.2 Theorem

For sufficiently small λ, the expected ex-post regret for strategy ∆wi = ∂P
∂wi

is 0.

12.6.3 Proof

Consider Taylor’s theorem at the point W for the payoff function P under a change in weights W∗ =
W+λ∆W. There exists a function h(W∗) such that in the limit as, W∗ →W we have the exact equivalence:

P (W∗) = P (W) +
∂P

∂W
(W∗ −W) + h(W∗) (31)
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Let P (W∗) represent the payoff when the weight change of the ith row is ∆Wi = ∂P
∂Wi

, and let P (W∗) be
any other choice. Since λ→ 0, we have W∗ →W and by the definition of regret we can write:

rgti = E∆Wj [max
∆W∗

i

[
∂P

∂W
(W∗ −W)− ∂P

∂W
(W∗ −W)]] (32)

This follows by subtracting Equation (31) with choice W∗ and W∗. Next, substituting W∗ −W = −λ∆W
and expanding ∂P

∂W
∆W = [ ∂P

∂W0
∗∆W0, ...

∂P
∂Wn

∗∆Wn] into the equation above leaves:

∂P

∂W
(W· −W)− ∂P

∂W
(W· −W) = λ(

∂P

∂Wi
·∆W∗

i −
∂P

∂Wi
·∆Wi∗)+

λ

n∑
j 6=i

(
∂P

∂Wj
·∆W∗

j +
∂P

∂Wj
·∆Wj∗)

(33)

The constant λ can be removed and the second term depends only on weights of other rows Wj 6=i. Since these
are independent and evenly distributed these can be removed under the expectation E∆Wj . He have:

rgti = E∆Wj [max
∆W∗

i

[
∂P

∂Wi
·∆W∗

i −
∂P

∂Wi
·∆Wi∗]] (34)

Finally, we use the the fact that for vectors a, b and angle between them θ, the magnitude of the dot product
is |a||b|cosθ. This is maximized when the vectors are parallel θ = 0 and cos(θ) = 1. In our case, we
have the maximum when ∆Wi = κ ∗ ∂P

∂Wi
for some constant κ > 0. Thus P (∆W∗) is maximize when

∆W∗
i = κ ∗ ∂P

∂Wi
. Since P (∆W∗) = P (∆W∗) in the maximum, this proves the point.

12.7 Simulating the Loss Convergence

Bellow is python code for simulating the stake-convergence of a disjoint competing sub-graph against the
majority graph.

import matplotlib.pyplot as plt
from scipy.sparse import random
from sklearn.preprocessing import normalize
import numpy as np
np.set_printoptions(precision=3, suppress=True)

def random_weight_matrix( n, density ):
rows = []
for _ in range( n ):

row_i = random(1, n, density=density).A # Each row has density_A
row_i = normalize(row_i, axis=1, norm=’l1’) # Each row sums to 1.
rows.append(row_i)
assert np.shape(row_i)[1] == n
assert np.isclose(np.sum(row_i), 1.0, 0.001)

W = np.concatenate(rows)
assert np.shape(W)[0] == n and np.shape(W)[1] == n
return W

def random_stake_vector( n ):
S = np.random.uniform(0, 1, size=(n, 1))
S = (S / S.sum())
S = np.reshape(S, [1, n])
S = np.transpose(S)
return S

def sigmoid(x):
return 1 / (1 + np.exp( -x ))

def get_gradient( n, W, R, S, A, C ):
gradient = []
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for i in range(n):
grad_i = 0.0
for k in range(n):

inner = 0.0
for j in range(n):

inner += A[j] * S[j] * C[j, k]
grad_i += C[i, k] * R[k] * np.exp(inner) * sigmoid(inner) * sigmoid(inner) + W[i, k] * (sigmoid(inner) - 0.5)

gradient.append(grad_i)

return np.concatenate(gradient)

def cabal_decay(
nA:int = 5,
nB:int = 100,
n_blocks:int = 2000,
tau:float = 0.01,
learning_rate:float = 0.05

):
r""" Measures the proportion of stake held by a disjoint sub-graph ’cabal’ as a function of steps.

Args:
nA (int):

Number of peers in the honest graph
nB (int):

Number of peers in the disjoint graph
n_blocks (int):

Number of blocks to run.
temperature (float):

temperature of the sigmoid activation function.
tau (float):

stake inflation rate.
learning_rate (float):

scaling term learning rate.

Returns:
history (list(float)):

Dishonest graph proportion.
"""

n = nA + nB
# Randomized Matrix of weights. We create the subgraphs by concatenating two disjoint
# and random square matrices.
W = np.concatenate((

np.concatenate((random_weight_matrix(nA, 0.9), np.zeros((nA,nB)) ), axis=1),
np.concatenate((np.zeros((nB,nA)), random_weight_matrix(nB, 0.9)), axis=1)),
axis=0) ; print (’W \n’, W)

# Randomized Vector of stake.
# Subgraph A gets 0.51 distributed across values 1->n_a.
# Subgraph B gets 0.49 distributed across values 1->n_b
S = np.concatenate((

random_stake_vector(nA)*0.51,
random_stake_vector(nB)*0.49),
axis=0) ; print (’S \n’, np.transpose(S))

# Scaling vector. A is multiplied by S before each iteration
# to attain our scaled stake.
A = np.ones(n) ; print (’A \n’, A)

# Matrix of connectivity. We use the true absorbing markov chain calculation
# In practice this is too difficult to compute and opt for a depth d cut off.
Wdiag = np.zeros((n,n))
Wdiag[np.diag_indices_from(W)] = np.diag(W)
Q = W - Wdiag
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C = np.maximum(np.linalg.pinv(np.identity(n) - Q), np.zeros((n,n)))
C = np.where(C > 0, 1, -1) ; print (’C \n’, C)

# Iterate through blocks
history = []
for block in range(n_blocks):

# Scale the stake against our vector A.
S_scaled = S * np.reshape(A, (n,1))#; print (’S * A \n’, S_scaled)

# Compute the ranks W^t S.
R = np.matmul(np.transpose(W), S_scaled) / np.sum(S_scaled) #; print (’R \n’, R)

# Compute our trust scores sigmoid( (C^T S) * temperature )
T = 1 /( 1 + np.exp(-np.matmul(np.transpose(C), S_scaled))) #; print (’T \n’, T)

# Compute our chain loss.
loss = -np.dot(np.transpose(R), (T - 0.5) ) # ; print (’loss \n’, loss[0][0])

# Our loss is negative, so we emit more stake.
if loss < 0.0:

# Compute our incentive function.
I = R * T

# Distribute more stake.
S = S + tau * (I/np.sum(I))

# Measure the size of our cabal.
S_Honest = np.sum(S[:nA])
S_Cabal = np.sum(S[nB:])
ratio = S_Cabal / (S_Honest + S_Cabal)
history.append(ratio)

# Our loss is positive, so we update our scaling terms.
else:

# Compute the gradient of our scaling terms.
grad = get_gradient( n, W, R, S, A, C ) #; print (’Grad \n’, grad)

# Update our scaling terms, being sure not to have negative values.
A = np.minimum(np.maximum( A + learning_rate * grad, np.zeros_like(A) ), 1)

plt.plot(history)

cabal_decay()

15


	Model
	Incentive
	Bonds
	Reaching Consensus
	Running the Network
	Tensor Standardization
	Conditional Computation
	Knowledge Extraction
	Learning Weights
	Collusion
	Conclusion
	Appendix
	Ranking Accuracy
	Deriving the idealized ranking
	Deriving the weight convergence game.
	Theorem
	Setup
	Deriving the ex-post zero-regret step.
	Definition
	Theorem
	Proof

	Simulating the Loss Convergence


